INTEGRATIVE DESIGN AND PROCESSING OF ENVIRONMENTAL IOT AND MICROSCOPY DATA VISUALIZATION

Ribhav Jain, Steven Konstanty, Todd Nicholson, Zhe Yang, Patrick Su, Robert Kaufman, and Klara Nahrstedt

University of Illinois at Urbana-Champaign

Contact: ribhavjain@gmail.com, smkonstanty@gmail.com, tcnichol@illinois.edu, klara@Illinois.edu

Abstract and Introduction

The environment consists of the 4CeeD and Senselet systems that lie under The Timely and Trustworthy Curating and Coordinating Data Framework (T2C2) that drastically reduce the materials-to-device process often span several decades. Semiconductor cleanrooms used in research to fabricate devices often deal with minute particles that must be dealt with exceptionally carefully and need experimental and environmental monitoring. The 4CeeD and Senselet systems allow researchers and scientists to collect, archive, analyze, and share collected digital data from labs and testing sites before archiving and publishing it for widespread usage [1]. These cloud systems exist separately and have very different methods of authentication, access control, and data storage. While these two data management systems have benefitted researchers and shortened scientific research and materials-to-device processes — they still lack smooth integration. Scientists and researchers have to manually correlate data between the two platforms in a highly tedious and inefficient way. They do not have a way to view the external sensor data for their experiments in the 4CeeD system and are therefore unable to detect anomalies or trends easily. Since being able to correlate the external and experimental data stored in the two different platforms is extremely helpful for researchers, this project integrates the two. This poster discusses the design and integration between the 4CeeD and Senselet frameworks. It speaks about the fusion and correlation of data in the 4CeeD system using MongoDB from the Senselet database InfluxDB in a secure and coordinated manner.

4CeeD and Senselet

The 4CeeD system leverages the Closer framework developed at the National Center for Supercomputing Applications & focuses on capturing, correlating, and coordinating the data obtained in real-time across various experiments & fields. 4CeeD is an intelligent data management system that leverages the advantages of shifting the cloud, i.e., privacy, security, and scalability.

Integration Framework Design

This migration will allow the 4CeeD system to store the external sensor data in addition to the internal microscopy data.

User Interface Through 4CeeD

Ultimately, the project involves using an iframe to visualize data from Senselet with the help of Grafana inside 4CeeD and an extractor to migrate data between the two platforms.

Acknowledgements

I would like to acknowledge the research effort around 4CeeD funded by the National Science Foundation, NSF ACI 1836834 and Senselet by the National Science Foundation (award number 1827126).